logo dha

DHA

10/02/2025
08:00
Horário oficial: Brasília

10/02/2025
Cardiologia
Português
logo dha

Seguindo

Sobre este conteúdo

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Comentários

Deixe um comentário

49 Aulas
24 Horas
10 Aulas
10 Horas

Comentários

Deixe um comentário

Screenshot_4
13:33
Corte
04/10/2022
Screenshot_2
15:29
Corte
02/10/2020
Kit_Mkt_Cianotica-Thumb-Podcast
01:17:14
Podcast
30/08/2024
Thumb (15)
26:55

DIC

Corte
03/06/2024
Slide - 15º Palestra
40:17

DHA

Íntegra
24/04/2021
[Sbc Pr] Fibrilação Atrial Na Atenção Primária: Como Avaliar E Conduzir - 07/06/22
Íntegra
07/06/2022
Captura De Tela 2023-09-28 115012
00:17:43
Corte
25/09/2023
Kit-Mkt-Socerj-Thumb-Podcast
25:11
Podcast
28/05/2025
Caso Clínico De Dissecção
Íntegra
09/07/2021
Dha Thumb Podcast
05:45

DHA

Podcast
05/08/2024
Thumb (2)
01:25:44
Íntegra
03/06/2024
Thumb Dha
01:53:08

DHA

Íntegra
09/09/2024
Podcast Dcc Cp
Podcast
28/07/2022
Socaba - 15/11/22
Íntegra
15/11/2022
Debate Com Dischinger: Hipertensão E Dano Vascular – Parte 2

DHA

Íntegra
Carrinho de compras