logo dha

DHA

10/02/2025
08:00
Horário oficial: Brasília

10/02/2025
Cardiologia
Português
logo dha

Seguindo

Sobre este conteúdo

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Comentários

Deixe um comentário

17 Aulas
8 Horas

SBC

7 Aulas
15 Horas

Comentários

Deixe um comentário

Carotida Online
02:15
Íntegra
15/08/2022
[Dic] Avaliação De Isquemia Miocárdica Por Perfusão Quantitativa - 22/11/21

DIC

Íntegra
22/11/2021
Dcccp - Ergometria
23:26
Corte
18/11/2024
Thumb
01:12:41
Íntegra
15/05/2023
Simpósio Satélite Novartis
Íntegra
15/07/2020
Thumb Socaba
01:13:17
Íntegra
02/10/2024
Soluções Clinicamente Seguras Ao Tratamento Valvar Aórtico
Íntegra
20/07/2020
Thumb (41)
01:00:56
Íntegra
11/07/2024
Socerj-Corte-2
17:00
Corte
03/04/2023
Thumb (33)
08:53
Corte
29/04/2024
Thumb Comité De La Mujer Podcast
07:00
26/04/2024
Screenshot_2
32:12

DIC

Corte
03/05/2021
Kit_Webinar_Carotida_Modelo-Thumb-Podcast
07:14
05/12/2024
Thumb Dfcvr - 17/11/22
Íntegra
17/11/2022
Thumb
Íntegra
07/03/2023
Carrinho de compras