logo dha

DHA

10/02/2025
08:00
Horário oficial: Brasília

10/02/2025
Cardiologia
Português
logo dha

Seguindo

Sobre este conteúdo

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Comentários

Deixe um comentário

SBC

16 Aulas
15 Horas
18 Aulas
10 Horas

Comentários

Deixe um comentário

Thumb (66)
01:08:37
Íntegra
17/02/2025
[Dic] Estudo Ischemia

DIC

Íntegra
22/06/2020
Kit_Mkt_Cianotica-Thumb-Podcast
01:33:40
Podcast
13/09/2024
Dha Thumb Podcast
05:39

DHA

Podcast
30/09/2024
[Dic] A Imagem No Implante Da Core Valve

DIC

Íntegra
18/05/2020
Socerj-Corte-Alexandre
21:21
Corte
10/04/2023
Thumb
Íntegra
07/08/2023
Thumb
31:12
Corte
25/07/2023
Thumb (2)
26:39
Corte
03/06/2024
[Escola De Eco] Eco De Excelência – Ep. 29 – Estudo Do Átrio Direito
Íntegra
18/07/2020
A Jornada De Cardiologia Do Sul
Íntegra
04/12/2021
Captura De Tela 2023-09-21 104100
01:09:01
Íntegra
19/09/2023
Screenshot_1
21:57
Corte
07/07/2023
Screenshot_1
22:13
Corte
06/10/2020
Curso Básico De Ecg – Aula 08: Distúrbios De Condução Av
Íntegra
12/05/2020
Carrinho de compras