logo dha

DHA

10/02/2025
08:00
Horário oficial: Brasília

10/02/2025
Cardiologia
Português
logo dha

Seguindo

Sobre este conteúdo

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Este é o "Conversas sobre Hipertensão" - o Podcast do DHA / SBC. Uma iniciativa dedicada aos profissionais de saúde interessados em hipertensão, trazendo conteúdos relevantes e atualizados para você. Junte-se a nós para explorar os desafios e avanços no cuidado ao paciente hipertenso.

Associations between PM2.5 and its chemical constituents and blood pressure: a cross-sectional study

Dong, Shu; Yu, Bin; Yin, Chun; More

Journal of Hypertension. 42(11):1897-1905, November 2024.

 

Objectives:

To investigate the associations between PM 2.5 and its chemical constituents with blood pressure (BP), assess effects across BP quantiles, and identify the key constituent elevating BP.

Methods:

A total of 36 792 adults were included in the cross-sectional study, representing 25 districts/counties of southeast China. Quantile regression models were applied to estimate the associations of PM 2.5 and its chemical constituents (ammonium [NH 4 + ], nitrate [NO 3 − ], sulfate [SO 4 2− ], black carbon [BC], organic matter [OM]) with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean artery pressure (MAP). A weighted quantile sum (WQS) index was used to estimate the relative importance of each PM 2.5 chemical constituent to the joint effect on BP.

Results:

The adverse effects of each interquartile range (IQR) increase in PM 2.5 , NH 4 + , NO 3 − , SO 4 2− , and BC on BP were found to be greater with elevated BP, especially when SBP exceeded 133 mmHg and DBP exceeded 82 mmHg. Each IQR increase in all five PM 2.5 chemical constituents was associated with elevated SBP ( β [95% CI]: 0.90 [0.75, 1.05]), DBP ( β : 0.44 [0.34, 0.53]), and MAP ( β : 0.57 [0.45, 0.69]), NH 4 + (for SBP: weight = 99.43%; for DBP: 12.78%; for MAP: 60.73%) and BC (for DBP: 87.06%; for MAP: 39.07%) predominantly influencing these effects. The joint effect of PM 2.5 chemical constituents on risks for elevated SBP and DBP exhibited an upward trend from the 70 th quantile (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Conclusion:

Long-term exposure to PM 2.5 and its chemical constituents was associated with increased risk for elevated BP, with NH 4 + and BC being the main contributors, and such associations were significantly stronger at 70th to 90th quantiles (SBP exceeded 133 mmHg, DBP exceeded 82 mmHg).

Comentários

Deixe um comentário

SBC

24 Aulas
15 Horas

SBC

18 Aulas
10 Horas

Comentários

Deixe um comentário

Kit-Mkt-Socerj-Thumb-Podcast
14:27
Podcast
02/04/2025
Dic_28062021

DIC

Íntegra
28/06/2021
Socaba (1)
Íntegra
23/08/2021
Sbc Ba
01:24:02
Íntegra
31/08/2023
Thumb
25:20

DIC

Corte
19/02/2024
Thumb
Íntegra
02/09/2022
[Sbc Go] Eventos Do American College Of Cardiology -Acc / Sbc-Go Dislipidema - 28/09/21
Íntegra
28/09/2021
[Dic] Pocus – Estudo Baseado Em Casos
01:38:56

DIC

Íntegra
20/07/2020
Encontro De Ecocardiografia Do Departamento De Ecocardiografia Da Socergs
Íntegra
07/08/2021
Socerj
01:11:20
Íntegra
28/08/2023
[Sbc Pr] Dislipidemias E Aterosclerose: Estratificação De Risco E Manejo Farmacológico
01:30:19
Íntegra
03/08/2021
[Dha] Medicamentos Que Dificultam O Manejo Do Hipertenso – Hipertensão Secundária A Medicamentos

DHA

Íntegra
Papel Atual Do Ecocardiograma Na Seleção Dos Pacientes Para Terapia De Ressincronização Cardíaca

DIC

Íntegra
30/04/2020
Thumb
Íntegra
23/11/2022
Screenshot_1
41:31

DIC

Corte
20/07/2020
Carrinho de compras